

Tetrahedron Letters 43 (2002) 1441-1443

TETRAHEDRON LETTERS

Synthesis of strained glycophanes from D-glucal by oxidative homocoupling of propargyl ethers

Touria Belghiti,^a Jean-Pierre Joly,^{a,*} Claude Didierjean,^b Slimane Dahaoui^b and Yves Chapleur^a

^aGroupe SUCRES, UMR 7565 CNRS, Université Henri Poincaré-Nancy I, BP 239, F-54506 Vandæuvre, France ^bLCM3B, UMR 7036 CNRS, Université Henri Poincaré-Nancy I, BP 239, F-54506 Vandæuvre, France

Received 17 October 2001; accepted 15 November 2001

Abstract—A facile synthesis of electron-rich cage molecules based on the Ferrier allylic rearrangement of D-glucal followed by Glaser oxidative homocoupling of bridged disaccharides afforded two new 22- and 23-membered ring systems, which could be characterized by X-ray diffraction. © 2002 Elsevier Science Ltd. All rights reserved.

In this letter, we want to report some preliminary results on the synthesis of symmetric propargylic ethers en route to cage-like molecules endowed with electronrich cavities.¹ The oxidative coupling of terminal acetylenes to the corresponding α -diacetylenes, first discovered by Carl Glaser around 1869,² has been widely used for the design of macrocyclic compounds,³ synthetic receptors,⁴ and catenates.⁵ The first step of our strategy was based on a Ferrier rearrangement⁶ of

Scheme 1. Reagents and conditions: (a) $HOCH_2$ -R- CH_2OH , BF_3 · Et_2O , CH_2Cl_2 , $18^{\circ}C$; yields: 1 (86%), 2 (60%).

D-glucal, which afforded the glycoside dimers 1 and 2 in good yields (Scheme 1).

The boron trifluoride-catalyzed allylic rerrangements of tri-O-acetyl-D-glucal in dry dichloromethane at room temperature led almost exclusively to α -anomers ($J_{1-2} \leq 2$ Hz). These symmetric precursors were then deacetylated, protected as their trityl ethers (via diols **3** and **4**), and then easily transformed under phase-transfer conditions⁷ into the corresponding symmetric propargylic ethers **5** and **6** (Scheme 2).

The copper-catalyzed oxidative homocoupling of bisacetylenes **5** and **6** yielded diynes **7** and **8** via exclusive intramolecular cyclization (Scheme 3).

Under high dilution conditions, larger cyclic dimers could neither be observed by TLC nor isolated by liquid chromatography. Due to their C_2 -symmetry, ¹H and ¹³C spectra of glycophanes **7** and **8** displayed a

Scheme 2. Reagents and conditions: (a) MeONa, MeOH, rt; (b) TrCl, Pyr.; (c) $BrCH_2$ -C=CH, aq. NaOH, NBu₄HSO₄, C₆H₆, rt; yields: 5 (86% over three steps), 6 (73% over three steps).

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00045-X

^{*} Corresponding author.

Scheme 3. Reagents and conditions: (a) $Cu(OAc)_2 \cdot H_2O$, MeCN/Pyr., 3:1, 50°C, 2 h, yield 7 (47%); (b) CuI, O₂, Pyr., 25°C, 3 h, yield 8 (24%).

single set of signals for both their saccharidic and half of their aglycon parts.⁸

Slow evaporation of saturated solution $(CH_2Cl_2/n-hex$ $ane or CHCl_3/n-hexane)$ furnished stable monocrystals of **7** and **8** suitable for X-ray diffraction (Table 1 and Fig. 1), two asymmetric units being associated with one solvent molecule.⁹

In both cases, the electron-rich cavity is obviously of limited size; for instance, the largest distance between C-5 and C'-5 is about 6 Å in 7 and 7 Å in 8. After deducing the van der Waals radius, the macrocycles exhibit cavity sizes of ca. 3.0×1.9 and 4.0×2.0 Å, respectively, in the solid state.

Table 1.	Crystallographic	e data for	compounds	7 and 8
----------	------------------	------------	-----------	---------

Compound	7	8
Empirical formulae	C60H52O8/CH2Cl2	C60H56O9/CHCl3
Formula weight	901.06/84.93	921.09/119.37
Crystal system	Orthorhombic	Orthorhombic
Space group	P21212	$P2_{1}2_{1}2$
a (Å)	14.911(4)	14.989(3)
b (Å)	20.253(6)	20.479(4)
c (Å)	8.775(1)	8.955(2)
V (Å ³)	2 652.15	2 748.6
ρ	1.236	1.256

In summary, two new small cyclic monomers (7 and 8) were successfully synthesized and isolated in fair yields from D-glucal in only five steps. Suitable deprotected derivatives of 7 and 8 are currently under investigation for the complexation of cations as small guests.¹⁰

Acknowledgements

The authors warmly thank the Institut Nancéien de Chimie Moléculaire and the Région Lorraine in the 'Pôle de Recherche Scientifique et Technologique: Bioingénierie Vectorisation' program for financial support.

References

- (a) Jazwinski, J.; Blacker, A. J.; Lehn, J.-M.; Cesario, M.; Guilhem, J.; Pascard, C. *Tetrahedron Lett.* **1987**, *28*, 6057; (b) Srinivasan, M.; Sankararaman, S.; Hopf, H.; Dix, I.; Jones, P. G. J. Org. Chem. **2001**, *66*, 4299.
- (a) Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422; (b) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39, 2632.
- (a) Eglinton, G.; Galbraith, A. R. Chem. Ind. 1956, 737;
 (b) Sondheimer, B.; Amiel, Y. J. Am. Chem. Soc. 1957, 79, 5817;
 (c) de Meijere, A.; Kozhushkov, S.; Puls, C.; Haumann, T.; Boese, R.; Cooney, M. J.; Scott, L. T. Angew. Chem., Int. Ed. Engl. 1994, 33, 869.
- (a) Bukownik, R. R.; Wilcox, C. S. J. Org. Chem. 1988, 53, 463; (b) Claude, S.; Lehn, J.-M.; Schmidt, F.; Vigneron, J.-P. J. Chem. Soc., Chem. Commun. 1991, 1182; (c) Cloninger, M. J.; Whitlock, H. W. J. Org. Chem. 1998, 63, 6153; (d) Hoffmann, B.; Zanini, D.; Ripoche, I.; Bürli, R.; Vasella, A. Helv. Chim. Acta 2001, 84, 1862 and references cited therein.
- Dietrich-Buchecker, C. O.; Khémiss, A.-K.; Sauvage, J.-P. J. Chem. Soc., Chem. Commun. 1986, 1376.
- 6. (a) Ferrier, R. J.; Prasad, N. J. Chem. Soc. (C) 1969, 570;
 (b) Wieczorek, E.; Thiem, J. J. Carbohydr. Chem. 1998, 17, 785.
- Liang, J.; Hoard, D. W.; Van Khau, V.; Martinelli, M. J.; Moher, E. D.; Moore, R. E.; Tius, M. A. J. Org. Chem. 1999, 64, 1459.

Figure 1. Ball-and-stick representations of the X-ray structures of 7 and 8 (solvents and hydrogen atoms are omitted for clarity).

8. Spectroscopic data for 7: White crystals, mp (Tottoli) 206–207°C (*n*-hexane/CH₂Cl₂); $R_{\rm f}$ (SiO₂, EtOAc/*n*-hexane, 1:1) 0.7; [a]_D +101.3 (c 1.0, CHCl₃); IR v 2958, 2360 cm⁻¹; ¹H NMR (400 MHz, C_6D_6) δ 3.5 (d, 2H, J_{gem} 16.7, 2×OCHH), 3.54 (dd, 2H, J_{gem} 9.7, J_{5-6} 7.9, 2×H-6), 3.75 (dd, 2H, $J_{5-6'} \leq 2$, 2×H-6'), 3.78 (d, 2H, 2×OCHH), 3.9 (d, 2H, Jgem 13.4, 2×OCHH), 4.11 (dd, 2H, J_{3-4} 1.7, $J_{2-4} \leq 2$, $J_{4-5} \sim 8$, 2×H-4), 4.63 (d, 2H, J_{1-2} 2.6, 2×H-1), 5.04 (d, 2H, 2×OCHH), 5.23 (bt, 2H, 2×H-5), 5.36 (dd, 2H, J_{2-3} 10.2, 2×H-3), 5.69 (ddd, 2×H-2), 7.09 (t, 6H, Ar), 7.32 (t, 12H, Ar), 7.77 (bd, 12H, Ar); ¹³C NMR (62.9 MHz, CDCl₃) δ 52.0 (OCH₂-C=C on C-1), 55.0 (OCH₂-C=C), 63.0 (C-6), 67.5 (C-5), 70.0 $(OCH_2-C=C)$, 72.0 (C-4), 76.0 $(OCH_2-C=C)$, 82.0 (OCH₂-C≡C on C-1), 86.0 (CPh₃), 92.0 (C-1), 126.7 (C-4 Ar), 127.7 (C-2), 128.8 (C-2, -6 Ar), 130.5 (C-3, -5 Ar), 131.0 (C-3), 144.0 (C-1 Ar); ES-MS: m/z 918 (55%) $[M+H_2O]^+$.

Spectroscopic data for **8**: White crystals, mp (Tottoli) 185–186°C (*n*-hexane/CHCl₃); R_f (SiO₂, EtOAc/*n*-hexane, 1:1) 0.5; $[\alpha]_D$ –1.6 (*c* 1.7, CHCl₃); IR v 3063, 2922,

1727 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ 3.3 (dd, 2H, J_{gem} 10, J_{5-6} 5, 2×H-6), 3.43 (d, 2H, $J_{5-6'}$ 3, 2×H-6'), 3.75 (m, 2H, 2×H-5), 3.88–4.05 (m, 8H, 2×OCH₂CH₂), 4.27 (dd, 4H, 2×OCH₂C≡C), 4.75 (m, 2H, 2×H-4), 5.1 (bs, 2H, 2×H-1), 5.84 (d, 2H, J_{2-3} 10, 2×H-2), 6.1 (m, 2H, 2×H-3), 7.21 (t, 6H, Ar), 7.32 (t, 12H, Ar), 7.52 (bd, 12H, Ar); ¹³C NMR (62.9 MHz, CDCl₃) δ 52.7 (OCH₂), 63.4 (C-6), 67.7 (C-5), 68.6 (C-7), 70.1 (C≡C-C), 71.6 (CH₂-C≡C and OCH₂), 74.4 (C-4), 86.2 (CPh₃), 94.4 (C-1), 126.7 (C-4 Ar), 127.7 (C-2), 128.9 (C-2, -6 Ar), 130.5 (C-3, -5 Ar), 130.8 (C-3), 144.2 (C-1 Ar); MALDI-MS (2,5-dihydroxybenzoic acid matrix): m/z959.5 (100%) [M+K]⁺.

- 9. X-Ray data for glycophanes 7 and 8 have been deposited at the Cambridge Crystallographic Data Centre as supplementary material.
- (a) Bürli, R.; Vasella, A. *Helv. Chim. Acta* **1999**, *82*, 485;
 (b) Behm, R.; Gloeckner, C.; Grayson, M. A.; Gross, M. L.; Gokel, G. W. *J. Chem. Soc., Chem. Commun.* **2000**, 2377.